

Batterifondsprogrammet

Co Cobalt 58.933

A

Aluminun

26.98

UNIVERSIT

OF TECHNOLOGY

Recycling of discarded Li-Ion batteries (LIBs)

Jakob Kero and Caisa Samuelsson **Process Metallurgy MiMeR** Luleå University of Technology

Introduction

- Increasing political and consumer focus on climate change
 - Increase electric vehicle (EV) production
 - Increased lithium-ion battery (LIB) production

Introduction

- Increasing political and consumer focus on climate change
 - Increase electric vehicle (EV) production
 - Increased lithium-ion battery (LIB) production

Source: © OECD/IEA 2016, *Global EV Outlook 2016*, IEA Publishing

Photo:

Introduction

- LIB is an important technology for electric vehicle (EV) high specific power, energy density and lifetime
- Ongoing development of battery composition

Publishing

LIB material composition

• Cathode

- Lithium metal oxide, LiMeO₂, graphite and PVDF binder on aluminum foil
- Metals used: i.e. Co, Ni, Mn, Al, Fe
- Anode
 - Carbon and PVDF binder on copper foil
- Electrolyte
 - Li salts and organic solvents (flammable).
- Plastic casing and electrical contacts and circuit
 - Plastics and electronics
- Electronic circuit
 - Serve as a guard
- Steel or aluminium casing
 - Steel (Fe, Cr, Ni), Al

OF TECHNOLOGY

Why is LIB recycling problematic?

• Economically viable?

- Earlier: Cobalt recovery
- Nowaday: ? Lower cobalt content

• Different battery chemistries

- All contain Li in cathode
- Electrolyte contain Li salts in solution

Short circuiting / thermal runaway

System Electrodes	NCA Graphite	LFP(phosphate) Graphite	MS (spinel) Graphite	
Positive (Cathode)	$LiNi_{0.8}Co_{0.15}AI_{0.05}O_{2}$	LiFePO ₄	LiMn ₂ O ₄	LULEÅ VERSITY F TECHNOLOGY
Negative (anode)	Graphite	Graphite	Graphite	

Lithium ion batteries recycling processing routes

- Pre-treatments
 - Prevent short-circuits/ thermal runaways
 - Remove volatiles
- Mechanical processing
 - Crushing and sieving
- Pyrometallurgical processing
 - Pre-heating and smelting
- Hydrometallurgical processing
 - Separation of metals
 - Leaching
- Existing recycling routes
 - Combination of processes
 - Umicore
 - Heating/smelting process follow by leaching – recovering Co, Ni, Cu and Fe
 - Toxco process
 - Cooled in Nitrogen, mechanical shredding and hydrometallurgical process – recover LiOH₂ and metals
 - Sony-Sumitomo process
 - Incineration recovering Co from metallic residue

LIB recycling processing routes

• Umicore process:

LIB recycling processing routes

• Process for Co and metal recovery:

LIB recycling processing routes

- Process for Li recovery
 - Designed for all types of Li containing waste

THE NORTHERNMOST UNIVERSITY of Technology in Scandinavia

Wise Process Routes Battery recycling

By-products

FECHNOLOGY

- Combination of mineral processing, hydro- and pyrometallurgy
- Beneficiation to enriched material streams
- Raw material streams to existing processes-flexibility
- Design for recycling