Utilization of Industrial Residuals for Prevention of Sulfide Oxidation in Mine Wastes

LTU Lena Alakangas (project leader), Christian Maurice (co-project leader), Elsa Nyström, Susanne Sirén, Nils Eriksson (PhD students), Hanna Kaasalainen (Post doc), Fredrik Engström (associated)

Financiers Boliden Minerals AB
Pia Lindström, Emma Rönnblom-Persson, Magnus Filipsson, Nils Eriksson, Seth Muller

Project partners
Dragon Mining Andreas Unee
MEROX Jeanette Stemne
Nordkalk Anna Thynell
Cementa Bodil Wilhelmsson
SP Processum Gunnar Westin
Boliden Rönnskär Marie Holmgren, Tommy Wikström, Linn Andersson
Inhibition of sulfide oxidation

The subproject aims at developing techniques for prevention of sulfide oxidation in mine waste and subsequent improve leachate quality during mining operations.

Specific objectives:

• Evaluate inhibition techniques useful from economic, environmental and technical perspectives.

• Use remnants from mining and other industries in inhibition techniques.
Problem

• ARD from waste rock heaps with low NNP is limed

• Application of NNP to waste rock during operation can decrease amount of NNP needed through inhibition of sulfide oxidation by formation of coatings
 - Decrease metal(loid) and sulfate release
 - Decrease cost for lime, energy, and sludge
Inhibition of sulfide oxidation

Industrial remnants/by-products are tested in laboratory and pilot scale

- Lower material cost
- Limited or no use
Results

Table 1 Average concentrations of metalloid(s) in leachate from leaching of solely waste rock as well as waste rock with addition of industrial remnants

<table>
<thead>
<tr>
<th></th>
<th>pH (mS/cm)</th>
<th>EC (μg/L)</th>
<th>As (μg/L)</th>
<th>Cu (mg/L)</th>
<th>Fe (μg/L)</th>
<th>Hg (μg/L)</th>
<th>Pb (μg/L)</th>
<th>S (mg/L)</th>
<th>Sb (μg/L)</th>
<th>U (μg/L)</th>
<th>Zn (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste rock¹</td>
<td>1.4</td>
<td>32</td>
<td>9526</td>
<td>1589</td>
<td>9990</td>
<td>5.5</td>
<td>567</td>
<td>10290</td>
<td>515</td>
<td>59</td>
<td>8487</td>
</tr>
<tr>
<td>LKD (5wt%)²</td>
<td>7</td>
<td>0.77</td>
<td>0.18</td>
<td><0.5</td>
<td><0.001</td>
<td><0.05</td>
<td><0.02</td>
<td>149</td>
<td>3</td>
<td>0.13</td>
<td>4</td>
</tr>
<tr>
<td>Fly ash (1wt%)³</td>
<td>4.6</td>
<td>0.51</td>
<td>0.12</td>
<td>6.5</td>
<td>1.9</td>
<td><0.05</td>
<td>5.7</td>
<td>82</td>
<td>0.32</td>
<td>0.55</td>
<td>308</td>
</tr>
<tr>
<td>Fly ash (2.5wt%)³</td>
<td>6.7</td>
<td>0.61</td>
<td>0.12</td>
<td><0.5</td>
<td>1.3</td>
<td><0.05</td>
<td><0.02</td>
<td>77</td>
<td>2</td>
<td>0.82</td>
<td>33</td>
</tr>
</tbody>
</table>

¹Average concentration of 300 days (day 400-700)
²Concentration at day 700
³Concentration at day 400
Future activities

• Identify secondary minerals (coatings) formed
• Identify how and where trace elements are captured
• Determine long-term evaluation of water quality and stability of secondary minerals formed